AUTHOR TITLE

PUB DATE NOTE

PUB TYPE
EDRS PRICE DESCRIPTORS

Kerchner, Charles T.
Flood Tides and Aging Swimmers: An Exploration into the Supply and Demand for Teachers.
4 Sep 83
43p. An earlier version of this paper was presented at the Annual Meeting of the American Political Science Association (Chicago, IL, August 31September 4, 1983). Speeches/Conference Papers (150) -- Viewpoints (120)

MFOl Plus Postage, PC Not Available from EDRS. Computer Science Education; *Educational Change; Educational Resources; Elementary Secondary Education; *Labor Market; Mathematics Instruction; Migration Patterns; Science Instruction; *Teacher Supply and Demand; *Teaching (Occupation)


#### Abstract

The teacher supply and demand problem is considered along three dimensions: (l) the aggregate balance between supply and demand, and the balance in different education specialties and different areas of the country; (2) the composition of the teacher work force, its age, and level of training; and (3) the apparent quality of the work force and the ability to attract highiy qualified new teachers. Effects of the "baby boom" are discussed as they reflect a current general glut of teachers which may be so pervasive as to discourage potential teachers from entering training programs. This same demographic phenomenon is analyzed for its future implications; namely, that there will be a teacher shortage due to increasing birth rates. Three areas of critical teacher shortage--science, mathematics, and computer education==are cited as problems that have no immediately predictable solutions. General migration from north to south and an apparent increase in movement from urban to rural areas is considered in ar examination of population trends. Suggestions are made for developing policies which may offer promise for improving the overall status of teaching. (JD)


[^0]Feprostiction huthity.

- Pomes of view of opinion e stated in the do ce Trent do hot necuseaty represent offer al NIE

TO THE EDUCATIONAL RESOURCES information center (ERIC)."

# Flood Tides and Aging Swimmers: An Exploration into The <br> Supply and Demand for Teachers [1] 

Charles T. Kerchner

Claremont Graduate School


#### Abstract

The flood tide of reform has hit the beaches of public education just as the swimmers are becoming older and arguably lest prone to add new strokes to their repertoires. The beach is also thought to have become a bit shabby, littered with society "s flotsam and jetsam; and less attractive to the more talented swimmers who have found the waters more pleasant and the buried treasures more plentiful elsewhere. The events raise the question of whether there will be enough strong swimmers left to endure the next wave of enrollment.


## * * *

Whatever reforms are instituted will be carried out by
teachers; and thus, the composition of the teacher work force
over the next two decades takes on substantial policy
importance. The supply and demand balance problem can be

[^1]
#### Abstract

considered along three dimensions. First, the aggregate balance between supply and demand, and the balance in different: educational specialties and uifferent areas of the country. Second, the composition of the teacher work force, its age arid level of training. Third, the apparent quality of the work force and the ability to attract highly qualified new teachers.


The Status of The Teacher Labor Force

Qf_Glut르_gnd_Shortages

There is currently a general glut of teachers, but the supply is rapidly falling to meet demand, and the belief in the presence of a giut may be so pervasive as to discourage potential teachers from entering training programs. In its latest projections; which we will examine, the National Center for Educational Statistics (NCES) asserts. "unless more college students go into teaching, the nation may be faced with a teacher shortage in the 1ate 19895." (Frankel and Gerald, 1992: 71) The current official projections suggest equilibrium in supply and demand by the end of the decade.

Two coinciding trends threaten the supply of teacher candidates in the late 1980 and 19905 when entollments will advance
rapidy. First, teacher training has become far less popular, accounting for only about 11.6 percent of the bachelor"s degreas offered in the country compared to 21 percent a decade earlier (Plisko, 1983: 184). The American Council on Education's 1982 survey showed less than 5 percent: of full-time freshman students indicating elementary or secondary teaching as a probable career field (21日). Second; over the next decade, the number of persons in the traditional college age cohort, 18 to 24 years, will decline by about 5 -miliion or about 16 percent (Frankel and Gerald, 1982: 14). It is the mismatch between the college graduation cohort and the elementary and secondary education cohort that provides the most suggestive evidence that there may be general teacher shortages in the 1990s. At the time enrollments increase most rapidly, the supply of new college trained manpower will drop.

The Mouse and The Snake. The circumstance likely to cause this mismatch between teachers and students is the same work of nature that caused teacher dislocations in the recent past, the children of the Eaby Boom. That unprecedented 19 years of fertility from 1946 to 1464 which produced $76-m i 11 i o n$ babies is reproducing itself. The presence of this generation causes a violation of the conventional assumption about population distribution. The population pyramidis not a pyramid at all but a bulge, which as it ages moves through society like a mouse through a snake (Figure 1). At each stage, the mouse stretches the skeleton of
society serially distorting the demands for education, jobs; housing, and, in the near future, retirement.

- 4 -

Figure 1
Fopulation Pyramidsa United States


SOURCE: U.S. Eureau of the Census, Currant Population Reporth, Serias P-25, No. 670 and unpublithed date.

Figure 2
Age Composition of the Adult Population

Age Composition of the Adult
Population by Six Age Groups

$-6-7$

The population pyramid takes on added meaning if we translate it into a series of waves in which the different ages of the population are displayed in relationship to each other. For each decade, the composition of the country's population will be substantially different than it was in the preceeding decade (Figure 2). We see peaks and valleys cainciding = The late gos and early 70 s produced a tremendous peak in the under 25 year olds and a trough in the age group just ahead. This decade shows a bulge in the prime childbearing years and an echo in the newborn. That echo will become a smalier, yet significant swell in the enrollments of public education. Using a middle range (2. 1 births per female of child bearing years) birth rate, we Ean expect elementary school enrollments will begin to rise nationally in 1986, and to inerease in 1990 by about 3.2 million students to EO. $\overline{\mathcal{S}}$ mililiong an 11 percent increase. This is about the same enroliment as elementary schools had in 1976, but still 4 mililon shy of the 1969 peak of the Baby Boom. High schools, the object of most of the school reform discuseion:n should continue to deciine through the decade and into the early 19905 losing 20 percent of their 1976 enrollment before turning upward. Thus, for the next decade, high school reform will have to take place within whatever constraints deciining enrollments imply. For districts financially driven by property takes, the deciine in enrollment may actually serve to place more dollars behind each student; but to the extent that districts rely on student-driven finance mechanisms, resource levels are
threatened. Regardless, deciining enrallments fight against economies of scale, increasing overhead and leaving the schools with an older, more expensive teacher corps.

The Hi-Tech Gap. The short-term general glut of teachers has until reeentiy masked public notice of or concern for shortages in some teacher specialties particularly math and science. Specific shortages have now become apparent, and 32 states have now taken action to encourage the fiow of applicants into math, science and comuter education (Education week, 19gs): In Eajifornia, a state with a substantial stake in technologically based industry, some soo teachers are employed on emergency eredentials in mathematics or sciences in the state's eight largest schaol districts (Smith, 1973: 23). In the 20 teacher education programs of the University of California and California State University system there are only 97 individuals enrolled in single-subject mathematics eredential programs and 174 in science prograins.

Specin] education appeared as an area of high demand for teachers during the late 1970s. It quickly garnered students as the one area in teaching "where there were still jobsg" and supply appears to be rising to meet student demand. The number of bachelor's degrees granted in special education increased by 67 percent during the 19705 and the number of master ${ }^{\text {a }}$ s degrees by 123 percent.

Eilingual education presents a more persistent problem. Farticularly as one considers immigration in the Southwestern states, the need for bilingual teachers is likely to grow for some time. California projects a shortage of between 8,600 and 11, 600 bilingual teachers this year.

Fegional Diveresity. In addition to substantial diversity by type of teacher, the question of demand for teachers is shaped by geography -- both regional variation and differences within regions. The surprises in the census of 1980, which put our numbers as 226,504, Bas, were not related to falling birth rates, for they had already been well recognized, but rather to the extensiveness of migration and of diversity in growth patterns among regions of the country. For the first time since the census was begun in 1790, rural areas $=-\quad$ which hold 25 perEent of the total population, had faster rates of growth than did metropolitan areas (Hauser, 19日1: 5S). Where the whole United States grew by 11.4 percent during the decades the non-metropolitan areas grew by 15.1 percent.

The Frostbelt-Sunbelt migration has been widely heralded, and indeed the 1970 saw substantial movements between regions of the country, and these are, in turn, reflected in the expected change in school age population by region. The large cities of the west and Soutin grew rapidly: Denver-Boulder SMSA by 30. 3 percent, San Diego 37 percent, Houston 44.6 percent, and Atlanta 26 percent. Those in the Northeast deciineds New York SMSA lost 9 percent,

Boston; -4.8, and Fittsburgh -5.9 ; while the Nassau-Suffolk area of Long Isiand geined 1.9 percent. The metropolitan areas of the North Central region generally remained stable, although some of the central cities had substantial population losses as the suburbs gained. Some, like Cleveland, lost substantial central city population, -23.7 percent, and its suburbs had relatively smaj. gains so that the entire SMSA lost 8.1 percent of its population. (Hauser, 1961: 57).

When considered together, the differences in migration, birthrate and the composition of the population suggest a divergence (Jackson, 19B1: 12) among the regions rather than an echo of the standard assumption that differences among the regions are declining. The differences are distinctive and diverging in several respects; birth rates, concentration of different races and cultures, types of industries and their growth and decline, and some would argue distinctive cultures and expectations that shape politics and the demand for public services (Garreau, 1982).

Fopulation migration, of course, shapes school enrollment, and as Figure 3 shows, gives quite different prospects for teacher demand for school districts throughout the country. For instance, during the same s-year period elementary schools are expected to increase ty nearly 22 percent in the mountain states while high schools in the mid-Atlantic states deciine by nearly 17 percent. Local school district variations are even more
acute. Some inner-ring suburbs are following the rollercoaster Fide of enrollment decline reported in the last decade by central cities. Niles Township in illinois expects to lose about 80 percent of its peak enrollment. Other districts expect growth, the difference being accounted for both by the genefial growth and decline of the region and by the intraregional migrations in search of jobs and affordable housing. As a consequence, even contiguous school districts have quite different enroliment projections.

Figure 3<br>Firojected Changes in School Age Fopulation By Region

|  | 1985-90 | 1990-95 | 1995-2000 |
| :---: | :---: | :---: | :---: |
| United States Total |  |  |  |
| 5-13 | 9.40 | 9.50 | -1.00 |
| 14-17 | -3.50 | 4.50 | 16.30 |
| New England |  |  |  |
| E-13 | 5.00 | 10.20 | -2. 30 |
| 14-17 | $=14.30$ | $=0.70$ | 16.70 |
| East North Central |  |  |  |
| S-13 | 4.00 | $\underline{2.60}$ | -7.20 |
| 14-17 | $-7.30$ | 0.30 | 8.50 |
| West North Central |  |  |  |
| 5-13 | 13.30 | B. 10 | -3.60 |
| 14-17 | -0.40 | 11.20 | 14.80 |
| Mid Atlantic |  |  |  |
| 5-13 | -1.00 | -0. 20 | -9.50 |
| 14-17 | -16.80 | -3.90 | 4.20 |
| South Atiantic |  |  |  |
| 5-13 | 6.60 | 10.40 | -1.30 |
| 14-17 | -4.20 | -2.30 | 18.90 |
| East South Central |  |  |  |
| $5=13$ | 13.90 | 15.60 | 2.30 |
| 14-17 | 4.70 | 3.70 | 25.80 |
| West South Central |  |  |  |
| $5-13$ | 15.00 | 14.40 | 6.20 |
| 14-17 | 8.90 | 10.00 | 20.30 |
| Mountain |  |  |  |
| 5-13 | 21.80 | 18.10 | 7.80 |
| 14-17 | 11.50 | 19.00 | 24.76 |
| Facific |  |  |  |
| $5=13$ | 16.30 | 13:50 | 1.20 |
| 14-17 | $-1.00$ | 13.30 | 29.30 |
| Maximum increase | 21.80 | 19.00 | 25.80 |
| Maximum decrease | $-16.80$ | -3.90 | -9.50 |

Source: George Masnick and John Pitkin, "Cohort Projections of 3chool=Age Fopulations for States and Regions: 1985-2000, MIT/Harvard Joint Center for Urban Studies, 1982.

## 

Educators are getting older, but in comparison to the recent past they are not old. The average age of administrators is about 50 and of teachers 40, but it is the distribution of school emplayees by age that provides the most ready intuitive grasp of supply and demand in the near future. One notes a humped distribution of teachers in the middle years; ages 30 to 44 and the underrepresentation of both the very young and those Elose to ¿raditional retirement age. In 1980 about 43 percent of the teaching force was between age 30 and $44 ;$ this compared to about 32 percent in 1960 and 1970. Only 8 percent of the teachers were under $2 \bar{\Xi}, \quad l e s s$ than half the proportion a decade earlier, and fewer than 10 percent were over 55. The distribution pointedly suggests that even with early retirement inducements, the teaching force we have now will form a substantial part of the teaching force the country is going to have for the next decade and a half. This labor force will have the advantages of stability and experience, but to the extent that the criticisms of the schools are intended as an indictment of the capability of the current teaching force, it would be unrealistic of us to expect that capability to shange very much, very fast.

The shape of the current teaching and administrative force will
also have a substantial effect on the demand for new teachers. The relatively smaller percentage of teachers in the $55-65$ age bracket suggests fewer retirement: and the criticalness of retirement assumptions to projections of future teacher supply and demand.

Figure 5 ,
Age Distribution of Teachers in The U.s.


Source: Sweet and Jaeobson (1983: 201)

16

The evidence is strong that as a fortion of the college-trained those going into teaching are $1 e s s$ academically capable than they were a decade or a generation ago. The decline of standardized test scores and other quality indicators has been well noted (Kerr, 198ड: 127-130):

- SAT scores of those in teacher education programs have declined faster than those of other students. In 1971, the SAT verbal and math scores of education students esceeded national means (472/455; 506/48日). By 1975 education scores had fallen below the mean, and they have remained there. California education students in 1982 scored well below national means on both verbal ( $399 / 426$ ) and quantitative (424/466) portions of the SAT (Smith, 19B3: 10).
- students entering teaching are ranked at the bottom compared to students entering other ocvupations. The 19 g 2 California results ranked education students $27 t h$ in verbal ability and 28th in quantitative ability out of 30 occupational groups (Smith, 1983: 10).
- school districts tend not to hire the most academically capable of the students available (Weaver, 1979: 30).
$1 \%$
$-16=$
- the most academically capable students tend to feave teaching more quickiy than others (Schlecty and vancep 1761).

At first, these changes appear surprising. There has been a drastic inereage in eollege graduetes fe fhe baby borm has entered the labor market, and far more graduates have had to settie for "underemployment," jobs that in different times would
户А位Eipation in the labor market has bean at an historichigha One would think that teaching would gppear more attractive in these circumetancesp particularly so te femalese Eut the operation of the labor market is sueh that these changes have served te make teaching a less attrective job choice rather than a more attractive one.

Labor supply is generally depicted as a queue with the most attractive potential workers in the front of the line. Those at the head of the line are generaliy widely attractive to employers and graduate schools. They have more options. In a situation of drastic oversupply, as is the case with teaching, it is those at the front of the inne who can seek to exercise those options. The perceived presence of jobs attracts workers:

Secondly, tsaching has become less ecanomically attractive. Real wages of workers generally declined in the late $1970 s$, but teaching wages declined faster. Between 1978 and 1981 all


 average teacher salary in the United states has deeinned relative to the Department of Labor"g standard for an intermedigte standard of 1 ivinge In 1972 teacher sealaries were gepercent of the intermediate standard for a fanily of foury but by $19 \beta 0$ salaries had deciined to 77 percent of the standard gonsteing 1980; 677): in the wake of teacher 1 eyoffes the occupation hes also lost ite appad as a stable and secure job. The value of a teaching credential as a transportable and enduring ciaim on a sob has disappeared.

Thire, the labor market has served to open other options particulgrly for women. Law, medicine and business have opened to women who have responcied by 1 ining up at the doors of those institutions. This Ehange is particulariy important to public schools becauce teaching was historicaily among the best jobs identified as women* s work. Thóse who would have wished for other options in years past now have them; and are taking themp

Finally, and perhaps most importantly, teaching has become 1 ess intrinsically attractive. The occupation is not depicted as pleasant, rewarding or of substantial stetus in the public medie, nor is it faddishly attractive as part of the arant garde as it was in some quarters during the years of the Great Society- A large number of teachers are actively diseatisfied with their
work and say that they would make other choices if they could.

## Modeling The Labor Market for Teachers

The model which follows concerns itself with the aggregate Supply and demand function, the problem of whether as a nation we run the risk of a widespread teacher shortage such as that winich Eharacterized the last Eaby Boom.

Th으﹎ㅡ으뭉 Function

The demand function can be specified as follows:

1. Demand for new teachers at any level is $\quad \underset{\text { ta }}{\text { ta }}=(5 \quad / \mathrm{fa}$ ta $)+F L=$ E, where
1.1. $\quad \begin{gathered}\text { ta } \\ \text { tatudent enroliment at time } t, i n ~ e v e l ~ a . ~\end{gathered}$
1.2. $\mathrm{F}_{\mathrm{ta}}=\mathrm{ratio}$ of students to teachers at time $t$ in level
a.
1.3. 5 is a function of the number of students in the ta next lowest level, the persistance of students from one level to the next, and the net migrations $S$ ta $=5 t-1$, a-1 $x$ $\mathrm{F}_{\mathrm{ta}}+\mathrm{M}_{\mathrm{ta}}$, where
2. उ. 1. Fta the persistenee student coefficient 1.3.2. $\begin{gathered}M \\ t a\end{gathered}=$ net migration at time t, level a.
1.4. FL $=$ the number of teachers leaving the field during triat period.
1.S. $E_{t a} \equiv$ the number of experienced teachers available at that grade and time=

Enroliment Assumptigns. I have used the NCES projectione (Frankel and Gerald, 19日2) : For the years beyond 1990 I have used the population prosections of the MiT/Harvard Joint Urban Studies Eenter (Maskick and Fithins 19g2) convertirg population into publie school enroliment at 95 for elementary enroliment and as for secondery. As shown in Figure E, columns A, E, they show the espected pattern of increasing elementary enrollments in the latter half of the decade, and decregsing high school enrollments throughaut.

Experienced Teachers. There were about 2,036,000 experience teachers working in public schools in 1981. Column $D$ in Figure $S$ calculates this body of experienced teachers based on last year*s figure plus new teachers hired less those leaving the field.

Student-Teacher Ratios. Estimates of student-teacher ratios are among the most eritical assumptions in any supply and demand model for teachers. At the current levels of enrollment and teacher empl gyment, changing the ratio by one (from 20 to 21 for
rates for beginning teachers in his one-city sample were as high as 33 percent. Baugh and Stone (nd: 7) using a national sample found rates of 8 percent in $1974-75$ and 11 percent in $1977=78$. Sweet and Jacobson (1982) found rates in eucess of 8 percent. The NCES has altered its turnover rate from 1 percent to 6 percent in recent years in response to a tighter job market and other factors, but is returning to an 8 percent turnover rate in projections for the 80 (Frankel and Gerald, 1982). As Sweet and Jacobsen (1983: 209-210) note, the NCES assumptions rest on a thin base of a 1968 survey of principals and two National Education Association surveys done in the mid-1960s. The intervening years, have been times of extraordinary change in working patterns particularly working patterns of females, and thus the basis of the turnover projection deserves closer serutiny.

I have placed the turnover rate among experienced teachers at 6 percent reflecting: (1) the relatively small number of persons in the $55-65$ age bracket, and (2) the rather large career bound cohorts that are following. However, in addition, $I$ have suggested that a substantial number of less experienced teachers will leave, representing this number in demand calculations as 20 percent of the last year*s new hires. Although the percentage of females who leave the labor force to raise children has dramatically decreased in the last 15 years, there is stili a substantial departure. In addition, job movement is not at all


#### Abstract

unusual among young employees. One singlefcity study placed the turnover rate among first year teachers at $3 \mathbf{3}$ percent (Murname, 1981: 14). The NEA survey of its members reports that 8 percent definitely plan to leave teaching as soon as possible and another 18 percent woult leave if something better came along (Eartholomew and Gardner, 1982: 18).


The_Sueply_Eunction

The supply of new teachers is a function of:

1. $\left.\begin{array}{c}\text { ta } \\ \text { ta } \\ \text { ta } \\ \text { ta }\end{array}\right) \times A L$ where
1.1. $\mathrm{B}_{\text {ta }}=$ bachelor*s degree graduates at time $t$, level a 1.2 A $\quad$ A the percentage of all bachelor's degree ta graduates attracted to teaching.
 that seek employment in public school teaching=
2. Cumulative surplus or deficit of teachers (C) iss C $\quad$ ta $\quad$ ta $\underset{\text { ta }}{(W)} \underset{\text { ta }}{ }$ ), where,
2.1. $U_{t a}=$ the number of unemployed teachers available in the labor pool.

Number of entrants to the labor market. Eachelor degree
graduates stand as a substantial simplification of the entrants into the labor market from which potential teachers are drawn. These are projected to peak in the mid-1980s and then decine rapidly as seen in Figure 5. Column $H$ (NCES intermediate projections; Frankel and Gerald, 1982: 70). Fhe figures for the 19905 are taken from the MIT/Harvard population projections assuming a college going rate similar to that of he 1980 s.


Graduates available to teach. Not all teacher education graduates seet employment as teachers. Substantial numbers don"t apply, 90 percent of them reporting that they don"t want to teach and only io percent saying that they were discoliraged from applying because they perceived there were no jobs available (F1isko, 19日S: 216). In the recent past, about ge pereent of graduates have appiied, and this percentage is used as the assumption in Figure $\bar{S}_{5}$, Column $J$ in order to yield the total number of teacher graduates available, which is shown in Column $K$

Unemployed Taachers. The approximation of the pool of unemployed, eredentialed teachers is extremely rough, a recent NEA estimate putting the number at 120 , ooo being perhaps the best available. However, we have no reasonable way of knowing how this "reserve army" will behave in the labor market; whether they will willingly return to teaching or whether they are fixed in job choices elsewhere. For purposes of illustration, $\overline{\text { i }}$ have assumed that 75 percent of the cumulative surplus of teachers would be available in the following year (see column N).
$-25-25$

Figure 5
Supply and Demand of Fublic School Teachers in the United States (in thousands)

| $E N \underset{K-8}{E} \square$ | $\begin{aligned} & M E N \\ & 9-12 \end{aligned}$ | Fotal | Exper * nced Teachers | Ratio | Leaving Field | ot. <br> mand |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | E | C | $\bar{\square}$ | E | F | $\underline{\square}$ |
| 27,361 | 12,833 | 40, 194 | 4 2,036 | 18.90 | 122 | 91 |
| 27, 161 | 12, 385 | 37,544 | 2,005 | 18.90 | 138 | 88 |
| 27, 02⿹ㅡㄹ | 12,142 | 39,165 | 1,954 | 18.90 | 135 | 118 |
| 26,905 | 12,134 | 39,039 | 1,937 | 18.90 | 140 | 128 |
| 26,951 | 12,215 | 39,166 | 1,926 | 18.90 | 141 | 147 |
| 27,359 | 12,097 | 37,456 | 1,931 | 18.90 | 145 | 157 |
| 27,987 | 11, 317 | 39,804 | 1,942 | 18.70 | 148 | 164 |
| 28,722 | 1, ,456 | 40,158 | 1,958 | 18.90 | 150 | 167 |
| 29,447 | 11,15日 | 40,605 | 1,975 | 18.90 | 152 | 174 |
| 30,244 | 11,023 | 41,267 | 1,997 | 18.90 | 155 | 187 |
| 31,100 | 11,190 | 42,290 | 2,029 | 18.90 | 159 | 209 |
| 32,023 | 11,357 | 43,380 | 2,078 | 18.90 | 166 | 217 |
| 32,946 | 11,525 | 44,471 | 2,129 | 18.96 | 171 | 224 |
| 33, 869 | 11,692 | 45,561 | 2,182 | 18.90 | 176 | 229 |
| 34,792 | 11,859 | 46,651 | 2,235 | 18.90 | 189 | 233 |
| 34,720 | 12,239 | 46,959 | 2,288 | 18.90 | 184 | 196 |
| 54,648 | 12,620 | 47,268 | 2,301 | 18.90 | 177 | 200 |
| 34,576 | 13,001 | 47,577 | 2,324 | 18.90 | 179 | 194 |
| 34,504 | 13, 301 | 47,885 | 2,338 | 18.90 | 179 | 196 |
| 34,432 | 13,762 | 48,194 | 2,355 | 18.90 | 180 | 195 |

Figure 5, continued
Supply and Demand of Fublic Schoal Teachers in the United States
(in thousands)

| Tot. EA | \% of EA in Ed. | $\%$ <br> Avail. <br> teach | Teacher Grads. Available | Annual Surplus (Deficit) | Unemployed teachers | Cumulative Surplus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | I | $\checkmark$ | K | L | M | N |
| 932 | 0.14 | 0.85 | 111 | 20 | 84 | 104 |
| 945 | 0.13 | 0.85 | 104 | 17 | 78 | 95 |
| 965 | 0.12 | 0.85 | -98 | (20) | 71 | 51 |
| 985 | 0.13 | 0.85 | 109 | (19) | 38 | 19 |
| 985 | 0.14 | 0.85 | 117 | (29) | 14 | (15) |
| 981 | 0.15 | 0.85 | 125 | (31) | $\bigcirc$ | (47) |
| 970 | 0.16 | 0.85 | 132 | (32) | $\bigcirc$ | (78) |
| 949 | 0.17 | 0.85 | 137 | (29) | - | (108) |
| 938 | 0.18 | 0.85 | 144 | (30) | $\bigcirc$ | (138) |
| 930 | 0.19 | 0.85 | 150 | (37) | O | (175) |
| 926 | 0.20 | 0.85 | 157 | (51) | $\bigcirc$ | (226) |
| 922 | 0.21 | 0.85 | 165 | (52) | 0 | (278) |
| 919 | 0.22 | 0.85 | -172 | (52) | $\bigcirc$ | (330) |
| 915 | 0.23 | 0.85 | 179 | (50) | 0 | (300) |
| 911 | 0.24 | 0.85 | 186 | (47) | $\bigcirc$ | (428) |
| 918 | 0.25 | 0.85 | 195 | (1) | 0 | (429) |
| 924 | 0.26 | 0.85 | 204 | 4 | 0 | (425) |
| 930 | 0.25 | 0.85 | 198 | 4 | $\bigcirc$ | (421) |
| 936 | 0.24 | 0.85 | 191 | (5) | - | (426) |
| 942 | 0.25 | 0.85 | 200 | 5 | $\bigcirc$ | (421) |

Ine_Baliznce_of_Suegly_and_Demand

These projections show an increasing deficit in teacher supply beginning in the mid 1980 and continuing for a decade. Annual surpluses are restored in the late 19905 but there continues to be a huge commulative shortfall in the numbers of trained teachers. Ey the year 2000, the shortfall is 421, oOO (Figure E, column N.) This is roughly 20 percent of the teacher labor force.

## Reform and Labor Policy for Teachers

The Tw

A 20 perceent shortfall in the numbers of qualified teachers available appears as a maseive problem, one which at first inspection calls for massive intervention. Eut there are serious dangers in overstimulation of the laber market. Eesides the softness of the assumptions in the supply and demand model, there are a number of extremely ready steps that labor markets have available to deal with short run inbalances. Incentives for early retirement could be withdrawn, emergency credentials could
be granted as we see they are already being granted in math and
science, partotime teaching or job sharing among could be
encouraged among teachers who would otherwise leave the labor
force. Eut the one simple adjustment that has entremely powerful
effects on balancing supply and denand is to adjust the
student-teacher ratio. If we run the same model and allow the
student=teacher ratio to adjust to a teacher shortage by only 2
students per year, we substantially reduce the shortage and
create a teacher surplus by the end of the century. the model
run is shown in Figure 6 .

Figure 6
Frojection of Teacher Supply and Demand Allowing Student-Teacher Fatio to Respond to Shortages (in thousands)


Figure 6, continued
Frojection of Teacher Supply and Demand Allowing Student-Teacher Ratio to Respond to Shortages
(in thousands)

| Tot. EA | $\%$ هf $\overline{\mathrm{B}} \mathrm{A}$ in Ed. | $\%$ <br> Avail. <br> teach | Teacher Grads. Available | Annual Surplus (Deficit) | Unemployed teachers | Cummulative Sur -plus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | I | $J$ | K | L | M | $N$ |
| 932 | O. 14 | 0.85 | 111 | 20 | B4 | 104 |
| 945 | 0.13 | O. $8^{85}$ | - 104 | 16 | 78 | 94 |
| 965 | 0.12 | 0.85 | 98 | (21) | 70 | 49 |
| 985 | 0.13 | 0.85 | 109 | 2 | 37 | 39 |
| 985 | O. 14 | 0.85 | 117 | (8) | 29 | 21 |
| 9 B 1 | 0.15 | 0.85 | 125 | (5) | 16 | 11 |
| 970 | 0.16 | 0.85 | 132 | (4) | 8 | 4 |
| 949 | 0.17 | 0.85 | 137 | 1 | 3 | 4 |
| 938 | 0.18 | 0.85 | 144 | 1 | 3 | 4 |
| 950 | 0.19 | 0.85 | 150 | (3) | 3 | 0 |
| 926 | 0.20 | 0.85 | 157 | (14) | 0 | (14) |
| 922 | 0.21 | 0.85 | 165 | (12) | 0 | (26) |
| 919 | 0.22 | 0.85 | 172 | (10) | 0 | (36) |
| 915 | 0.23 | 0.85 | 179 | (5) | 0 | (41) |
| 911 | 0. 24 | 0.85 | 186 | $\bigcirc$ | 0 | (41) |
| 918 | 0.25 | 9.85 | 195 | 44 | 9 | 3 |
| 924 | 0.24 | 0.85 | 188 | 14 | 2 | 16 |
| 930 | 0.23 | 0.85 | 182 | 15 | 12 | 27 |
| 936 | 0.22 | 0.85 | 175 | 2 | 20 | 22 |
| 942 | 0.23 | 0.85 | 184 | 34 | 16 | 50 |

## Composition_of the_Teacher Labor Ferce

If the aggregate supply and deemand for teachers does not present a substantial policy propenem, what about the composition of the teacher work foree? The teacher labor force will age as the population ages, with teachers being somewhat older than the mean reflecting the expansion of teaching during the years when the population pyramid*s bulge passeed through school. The extent to which this represents a problem requiring policy response is partly a matter of taste and vallies and this country"s tastes have eome to les亏 explicitly value youthfulness. Now that werpe mostly over 30 , we've leaded that we can be trusted.

But from the standpoint of school structural reform, the eurrent composition of the labor mespret presents possibiy serious organizational challenges. The distribution of rewards and incentives, in so far that they can be controlled by school districts at all, is a matter for negotiationg and in most every school district bargaining unjt older teachers hold the preponderence of voting strengthe In efforts to compress the salary schedule, front-loading inda-acements to the young, efforts to change the length of the schoolle day and even those to enforce the assignment and marking of Fiomework may meet with more resistance than enthusiasm. Restrb_cturing or staging teaching
ocareers so that they will provide long-term and periodic rew-ards sand incentives is a difficult and complex problem (Sykes: 10983, 121), but it is one much more likely to find a sympath-atic E-acdience among the current latoor force of teachers, the majorsity - of which finds itself solidly mideareer.

The flatness of teacher age distribution throughout the emid-career years suggests that teaching, contrary to the find ings oof Waller in the 1930 and LoEtie in the 1960 s, is beginning to Be considered a career by tho se who teach. Changes in the fem-male = 1 abor participation rate for ages 20-45 clarly sugegest - persistance, and carer $a \leq$ opposed to immiate in= come oorientation. A substantial majority of those over 40, and 40 - percent of those over 30 , plan to stay till retiremment (Bartholomew and Gardner, 1982: 243). In addition, we find =substantial evidence of career preparation. Eetwen 1970 and $=1980$ the portion of doctorates in education awarded to femaales $=$ increased from 14 to 31 percent, and the percentage of masteer's odegrees increased to 40 percemat. (Golladay, 1983:14).

If teaching is increasingly a career, then reforms such as arareer staging, renewal opportunities, participation, mentor=ship -and substantative evalution Eneed to be applied, and a litan $y$ of *these reforms has ben presented elsewhere, notably in the merecently published Handbook of Teaching and Policy edited by Fshulman and Sykes. Ferformanee incentives can be of a wide *variety of both monetary and non-monetary forms, and importanntly
can be directed to group and institutional levels as well as to individual teachers. Among the most consistently potent of these performance reforms has to do with the flow of arising from the inter action of teacher and student. (See Mitchell, Ortiz and Mitchell; 1983s for a review of the rewards and incentives literature.) Eut because the motivation to participate is different than the motivation to perform; reforms that work to establish satisfying and productive careers are not the same ones that will insure a flow of talented novices into those careers.

## 

It has proven difficult to attract talented novices to education. In the aggregate, the sands of teaching are found in the cove of last choice among talented college graduates. The question $i s$, does this matter? We know that teachers as a group have never done very well on tests of academic ability, that the relationship between teacher verbal ability and student outcomes is modest, and that a host of research has been unsucessful in finding a relationship between a host of teacher characteristics and student outcomes. Even so, as Sykes puts it "generations of teachers have served America"s youth tolerably well;" (Sykes: 1983; 114). Still, the cutting edge of reform siices toward providing mass education that moves beyond basic skills toward the higher order skills of synthesis, argument and reasoning:

These changes will not be the product of an occupation that stood last in line at the labor queue.


If potential teachers respond like economic beings, we can expect a relatively quick return of students to teacher education when it becomes apparent that teaching vacancies will be available. This should be particularly true because of the general glut of college trained manpower. During this decade the number of college graduates each year is nearly double the number of positions available in the professional/technical and managerial segment of the 1 abor market $-\infty$ more than 900,000 bachelor*s graduates and fewer than 450,000 jobs (Carey; 1981).


#### Abstract

Teaching jobs form a major share of the professional and technical positions that will come available. Even though the field will continue to contract somewhat, the country wili need  Eest of the decade compared to appronimately 36,000 engineers, 74,000 physiEians, 17,000 computer systems analysts and 12,000 쿠 awyers (Careys 1981: 49-50).


These are not the conditions that are most condusive to言 ncreases in the real wages of teachers in comparison to the wages of other workers. The relative insensitivity of the Eeacher labor market to qualitative differences in its applicants Fas already been noted, and in large measure this difference is etructural. Because teaching is a certified, credential ed Eccupation, the market responds to shortages of credentials Father than shortages of quality. Chronic shortages of Eredentialed teachers are unlikely during this decade of Estraordinary college graduates. Thus, it is difficult to depict a scenerio in which the real wages of teachers would advance sharply relative to those of other workers. It is even more d ifficult to advance a scenario in which a government could be found willing to pay for such advanees. A recent analysis of state fiscal capcity shows increasing competition for resources amd a declining fiscal base (Garms and Kirst, 1980). The U.S. Department of Education's School Finance Project (1983) placed neparly half the projected population by the year 2000 in states
with unfavorable prospects for financing its schools.

The one policy mechanism that offers promise of improving the academic capability among entering teachers is stringent control over the academic skills of those entering teaching. This strategy, being applied in some form by 23 states, runs the danger of inducing an apparent shortage of qualified teachers, but in fact if the underqualified were turned away any shortage in applicants would simply be the revelation of a shortage that has been present all along. Teacher competency tests have, indeed, reduced the pool of potenixal teachers. In the most recent administration of the Caífornia Basic Educational Skills Test, one third of the applicants failed one of the three sections -- reading; writing or math (Savage, 1983).

There are formidable obstacles against the use of this strategy. Teacher training institutions, which are largely state colleges and universities, are charged with producing an adequate supply of teachers. In addition, the budgets of those state schools of education rests on the generation of student enrollment. For schools of education incentives have been not to control the supply or quality of teachers, but conversely to solieit enrallment and relax standards for admission to the point that 48 percent of the teacher education programs in the country have minimum entry grade point average requirements 1 ess thañ 2.0 (Barnes and Tierney, 1982).


#### Abstract

Nonetheless, if legislatures, boards and superintendents have the tenacity to enforee pertinent academic achievement standards, we can be assured of the capacity of entering teachers. Then, if shortages exist it will be apparent that the problems of teacher salary and worklife quality need attentione if that should happen, powerful price and job quality incentives would come into place, and teachers would be treated as valued commodities.


## Eef er

Carol F. Earnes and Dennis 5. Tierney; "Froblems in Operationizing the Quest for Quality in Teacher Education," Stuty sponsored by the California Council on the Education of Teachers; 1982.

Bernard Eartholomew and Suzanne Gardnerg Status of The Aberican Public school Teacher, 19e0-si (Washingtons National Education Association), 1982.

William H. Eaugh and Joe A. Stone; "Mobility and wage Equilibration in the Education Labor Market, (Eugene: Center for Educational Folidy and Management, University of Oregon) n.d.

California State Department of Education; "Characteristics of Professonal Staff in California Public Schools; 1981-82. Sacramentos 1982.

Max L. Carey, "Occupational Employment Growth Through 1990," Monthly Lator Review, 104, 8 (August 1981): 44-55.

Barry Edmonston and Thomas R. Knapp; "A Demographic Approach to Teacher Supply and Demand," American Educational Research Journai 16,4 (Fall 1979): 351-366.

Education Heek; "A Survey of the States;" 2, 39 (July 27, 198s): 25.

Jack Fiorito and Fobert C. Dauffenbach, "Market and Nonmarket Influences on Curriculum Choice by College Students," Industrial and Labor Relations Reviews 36,1(October 19B2): S8-101.

Martin M. Frankel and Debra E. Gerald, Projections of Education Statistics to $1990=91$ (Washingtons National Center for Education Statistics, 1982

Fichard B. Freeman, The Harket for Goilege=trained Manpower (Cambridge: Harvard University Fress) 1971.

Mary A. Golladay, "Graduate Study In Educations An Analysis of Institutions and Degree Awards, 1971-1981," presented American EduEational Fesearch Associetion; Montreal, Canada, April 11-15, 1983.

Fhillip M. Hauser, "The Census of 19B0," Scientific American 245,5 (November 1981): 53-61.

Gregory Jackson, George Masnick, Roger Bolton, Susan Eartlett and John Pitking Regional Diversity (Boston: Auburn House) 1981.

Donna H. Kerr, "Teaching Competence and Teacher Education in the United States," pp. $126=149$ in Lee $5 . \quad$ Shulman and Gary Syker, Handbook of Teaching and Policy (N.Y.E Longmans), 1963.

Michael W. Kirst and Walter I. Garms; "The Demographic. Fiscal and Folitical Environment of Fublic School Finance in the 1980s," Stanford University Institute for the Study of Educational Finance and Governance, Folicy paper BQ=C1.

Dan C. Lortie, Schoolteachers A Sociological Study (Chicago: University of Chicaga Press) 1975.

George Marnick and John Pitkin; "Cohort Projections of School-Age Fopulations for States and Regions: 1985 to 2000," MIT/Harvard Joint Center for Urban Studies, 1982.

Douglas E. Mitchell, Floria Ida Ortiz and Tedi K. Mitchell, "Controlling the impact of Fewards and Incentives on Teacher Task: Performance," Final Feport; National Institute of Education Grant 80-0154; December 1983.

Richard J. Murname, "Teacher Mobi1ity Revisited," 16;" 1. (Winter 1981): उ=19: Journai of Human Resoumces.

Allan C. Or.ostein, "Teacher Salaries: Fast, Fresent, Future," phi Delta Kappan: 61,10(June 1980): 677-679.

Valena W. Flisko (ed.) The Condition of Edication, lggs edition (Washington: U.S. Department of Education), 198S.

Russell $W$. Rumberger, quereduration in the $u$. s . Labor Market (New York: Fraeger) 1981.

David G. Savage, "More Than Half on 2 Campuses Fail Teacher Test, "Los Angeles fipes Aug. 9, 1983, B-1.
 Teachers Leave Education? The North Carolina Cases" Phi Delta Kappan 62; 2 (October 1981): 106-112.

Lee S. Shulman and Gary Sykes (eds.), Handbook of Teaching and Polizy (N.Y.: Longmans), 19日3.

Sandra Smith and associates; "Improving the Attractiveness of the K-12 Teaching Profession in California," California Found Table on Educational Opportunity, 198s.

James A. Sweet and Linda A. Jacobsen; "Demographic Aspects of the Supply and Demand for Teachers," pp. $192-213$ iñ Lee S. Shulman and Gary Sykes (eds.), Handtook of Teaching and Policy (N.Y.: Longmans), 1983.

Gary Sykes, "Fublic Folicy and the Froblem of Teacher Quality: the Need for Screens and Magnets" Pp. $97=125$ in Lee S. Shulman and Gary Sykes (eds.), Handbook of fisching and Policy (N.Y. : Longmans), 1983.

Lester $C$. Thurow, "Education and Economic Equality;" Public Interest 28 (Summer 1972): 66-81.
U.S. Bureau of Census, Current Population Reports, Series P-20, No = 358.

```
U.S. Department of Education, School Finance project, "prospects
    for Fianging Elementary/Secondary Education int the States,"
    Decester 1982.
Millard Halker, The Sogiology of Teaching (N.Y = Russell and Pussel1 1961.
```

W. T. Weaver, "In Search of Quality: The Need for Talent in Teaching," Pюi Delta Kappan 61,1 (September 1979): 29-32, 46.


[^0]:    ***********************************************************************

    *     * 

    Reproductions supplied by EDRS are the best that can be made
    from the original document.

[^1]:    1. An earlier version of this paper was presented at the American Political Science Association Annual Meeting, Sept. 4, 1983; Chicago.
